Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Med Educ ; 23(1): 670, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723452

RESUMO

BACKGROUND: The purpose of this study was to explore the applicability of application effect of head-mounted mixed reality (MR) equipment combined with a three-dimensional (3D) printed model in neurosurgical ventricular and haematoma puncture training. METHODS: Digital Imaging and Communications in Medicine (DICOM) format image data of two patients with common neurosurgical diseases (hydrocephalus and basal ganglia haemorrhage) were imported into 3D Slicer software for 3D reconstruction, saved, and printed using 3D printing to produce a 1:1-sized head model with real person characteristics. The required model (brain ventricle, haematoma, puncture path, etc.) was constructed and imported into the head-mounted MR device, HoloLens, and a risk-free, visual, and repeatable system was designed for the training of junior physicians. A total of 16 junior physicians who studied under this specialty from September 2020 to March 2022 were selected as the research participants, and the applicability of the equipment and model during training was evaluated with assessment score sheets and questionnaires after training. RESULTS: According to results of the assessment and questionnaire, the doctors trained by this system are more familiar with the localization of the lateral anterior ventricle horn puncture and the common endoscopic surgery for basal ganglia haemorrhage, as well as more confident in the mastery of these two operations than the traditional training methods. CONCLUSIONS: The use of head-mounted MR equipment combined with 3D printing models can provide an ideal platform for the operation training of young doctors. Through holographic images created from the combination of virtual and real images, operators can be better immersed in the operation process and deepen their understanding of the operation and related anatomical structures. The 3D printed model can be repeatedly reproduced so that doctors can master the technology, learn from mistakes, better achieve the purpose of teaching and training, and improve the effect of training.


Assuntos
Realidade Aumentada , Hemorragia dos Gânglios da Base , Neurocirurgia , Humanos , Punções , Impressão Tridimensional , Hematoma
2.
Br J Neurosurg ; : 1-7, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33605815

RESUMO

OBJECTIVE: Percutaneous microballoon compression (PMC) is a simple and effective surgical procedure for the treatment of trigeminal neuralgia. The difficulty with this surgery is related to accurate and quick foramen ovale puncture. In this study, we compared the application of personalized 3D-printed guides and the traditional puncture method in trigeminal PMC surgery. METHOD: Data from 40 patients with primary trigeminal neuralgia treated with PMC between June 2017 and August 2019 were analyzed retrospectively. Personalized 3D-printed jigs were used to assist foramen ovale puncture in 20 patients, and Hartel positioning was used for puncture in 20 patients. Three-dimensional reconstruction was performed preoperatively using 3DSlicer software to understand the size of the foramen ovale and positioning of related anatomical structures. Based on the reconstruction, personalized surgical paths were created for the jig plate-assisted treatment group, and the printed jig plate was applied to the surgery through 3D printing to explore the surgical effect. RESULTS: Foramen ovale puncture was successful in all patients. Better results were achieved with guides than with the traditional method in terms of the foramen ovale puncture time (p < 0.01), total operation time (p < 0.01), and number of computed tomography scans (p < 0.01). The efficacy of surgery and postoperative complications did not differ between groups (p = 1). CONCLUSIONS: The use of personalized 3D-printed guides enables accurate puncture positioning in PMC, and improves the success rate of surgery, shortens the operation time, and reduces surgical risk, which has broad prospects in clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...